Decision 2 Game Theory Questions

6 Sam is playing a computer game in which he is trying to drive a car in different road conditions. He chooses a car and the computer decides the road conditions. The points scored by Sam are shown in the table.

		Road Conditions		
		<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃
	S ₁	-2	2	4
Sam's Car	<i>S</i> ₂	2	4	5
	<i>S</i> ₃	5	1	2

Sam is trying to maximise his total points and the computer is trying to stop him.

- (a) Explain why Sam should never choose S_1 and why the computer should not choose C_3 . (2 marks)
- (b) Find the play-safe strategies for the reduced 2 by 2 game for Sam and the computer, and hence show that this game does not have a stable solution. (4 marks)
- (c) Sam uses random numbers to choose S_2 with probability p and S_3 with probability 1 p.
 - (i) Find expressions for the expected gain for Sam when the computer chooses each of its two remaining strategies. (3 marks)
 - (ii) Calculate the value of p for Sam to maximise his total points. (2 marks)
 - (iii) Hence find the expected points gain for Sam. (1 mark)

Two people, Rowan and Colleen, play a zero-sum game. The game is represented by the following pay-off matrix for Rowan.

		Colleen		
	Strategy	C ₁	C2	C ₃
	R ₁	-3	_4	1
Rowan	R ₂	1	5	-1
	R ₃	-2	-3	4

(a)	Expl	ain the meaning of the term 'zero-sum game'.	(1 mark)
(b)	Show	w that this game has no stable solution.	(3 marks)
(c)	Expl	ain why Rowan should never play strategy R ₁ .	(1 mark)
(d)	(i)	Find the optimal mixed strategy for Rowan.	(7 marks)
	(ii)	Find the value of the game.	(1 mark)

4 (a) Two people, Ros and Col, play a zero-sum game. The game is represented by the following pay-off matrix for Ros.

		Col		
	Strategy	х	Y	Z
Ros	I	-4	-3	0
	П	5	-2	2
	ш	1	-1	3

- (i) Show that this game has a stable solution. (3 marks)
- (ii) Find the play-safe strategy for each player and state the value of the game. (2 marks)
- (b) Ros and Col play a different zero-sum game for which there is no stable solution. The game is represented by the following pay-off matrix for Ros.

		Col		
	Strategy	C ₁	C2	C ₃
Ros	R ₁	3	2	1
KUS	R ₂	-2	-1	2

- (i) Find the optimal mixed strategy for Ros.
- (ii) Calculate the value of the game.

(7 marks)

(1 mark)

Two people, Rose and Callum, play a zero-sum game. The game is represented by the following pay-off matrix for Rose.

		Callum		
		C ₁	C ₂	C ₃
	R ₁	5	2	-1
Rose	R ₂	-3	-1	5
	R ₃	4	1	-2

(a)	(i)	State the play-safe strategy for Rose and give a reason for your answe	er. (2 marks)
	(ii)	Show that there is no stable solution for this game.	(2 marks)
(b)	Exp	lain why Rose should never play strategy \mathbf{R}_3 .	(1 mark)
(c)	Rose 1 –	e adopts a mixed strategy, choosing $\mathbf{R_1}$ with probability p and $\mathbf{R_2}$ with p .	probability
	(i)	Find expressions for the expected gain for Rose when Callum chooses three possible strategies. Simplify your expressions.	s each of his (3 marks)
	(ii)	Illustrate graphically these expected gains for $0 \le p \le 1$.	(2 marks)
	(iii)	Hence determine the optimal mixed strategy for Rose.	(3 marks)
	(iv)	Find the value of the game.	(1 mark)